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In this paper we study the influence of internal fluctuations on a simple, but realistic model of a chemical
system exhibiting oscillatory behavior. The results of molecular dynamics and simulations of the master
equation are presented. The period of oscillations and the dynamics of the system obtained in these simulations
are in agreement with phenomenology. Two types of fluctuations seem to appear in the simulations: short
time scale fluctuations related to stochasticity of elementary reactions and long time scale fluctuations which
correspond to random motion of trajectories in the phase space.

I. Introduction

Phenomenological kinetics satisfactorily describe ideally
stirred, macroscopic, isothermal, close-to-equilibrium chemical
systems containing a large number of moleculesΩ. The
description of such systems is based on two fundamental
assumptions. First, collisions between molecules in the system
are random. Next, reactive collisions are rare enough that
nonreactive collisions are able to destroy possible correlations
between reactive molecules, so that the system remains homo-
geneous. Global fluctuations of concentrations, which are of
orderΩ1/2, are neglegible in such systems. However, internal
fluctuations can play an important role in far-from-equilibrium
macroscopic, isothermal chemical systems which exhibit non-
linear phenomena such as bistability, excitability, simple and
complex periodic oscillations, and deterministic chaos.1,2 From
the very begining of experimental studies on chemical oscilla-
tions, it became clear that fluctuations in such systems strongly
affect their dynamic behavior.3 A spontaneous appearance of
inhomogeneities after switching off stirring in previously well-
mixed reaction mixtures and strong influence of the stirring rate
on the character of oscillations of concentrations in various
chemical systems have been observed. For example, in the
Belousov-Zhabotinsky (B-Z) reaction, periodic (regular) oscil-
lations appear only at large stirring rates, whereas at small
stirring rates the system oscillates in an irregular way.3,4 The
target patterns appear in thin layers of the B-Z system with
ferroin as catalyst and bromomalonic acid as the organic
compound.5 The appearance of such patterns can be explained
on the basis of local fluctuations.6

The simplest way to introduce fluctuations is the Langevin
approach, in which noise terms are inserted directly into
phenomenological equations.7 Amplitudes of the noise obey
the fluctuation-dissipation theorem.8 A more rigorous approach
is based on the master equation (ME) which, using “birth-
death” processes, describes an evolution of a probability that a
system contains a given number of molecules for each re-
agent.2,7,8 The most fundamental method is provided by
molecular dynamics (MD), which gives a detailed description
of the behavior of all molecules composing a system (in the
clasical mechanics, the momenta and the positions of all
molecules).9 The simplest technique which utilizes this ap-
proach is molecular dynamics of reactive hard spheres.10 Other

MD techniques are known which use a continuous potential of
interaction between pairs of molecules (like the Lennard-Jones
one),10,11but these methods are much less efficient than the MD
of reactive hard spheres we use in this paper. If this method is
applied for thermoneutral reactions, then all colllisions (reactive
as well as nonreactive) between molecules are treated as elastic
ones.

At the moment there is no hope to describe fluctuations in
any real, macroscopic system using the ME or MD approaches.
To this aim one has to reduce the size of the system to so-
called mezoscopic scale. Moreover, a constructed reaction
scheme should allow for significant simplification of numerical
calculations. On the other hand, for the mesoscopic systems
the phenomenological description must be modified by taking
into account fluctuations in concentrations, which lead to
Langevin-type kinetic equations. It is only in the thermo-
dynamic limit that the average values of concentrations obtained
from the ME and MD converge to phenomenological values.

In this paper we are concerned with comparisons between
the MD and ME as well as the phenomenological approach for
a chemical model, which allows for a consistent description.
Whereas there are no problems in simulations of reactions of
any order in the master equation approach,2 there is a strong
limitation in microscopic simulations using hard-sphere chem-
istry, because only bimolecular reactions can be simulated in
the direct way. The known models for trimolecular reactions
of hard spheres are artificial. Moreover, it would be more
realistic if the reaction scheme consisted only of elementary
reactions, excluding autocatalytic ones. Such a model is
constructed in this paper and it is applied to describe simple
periodic oscillations close and far from the Hopf bifurcation.
The model is versatile enough to deal with an excitability, and
its simpler version has been used to describe a bistability.12-14

We present and discuss the results of numerical simulations of
this system using the ME and MD approaches. To our
knowledge there are only a limited number of papers in which
chemical oscillations are studied at both microscopic and
stochastic levels for the same system. A summary of results is
presented in a recent review paper,15 and simulations of
nonlinear phenomena in a thermochemical system are given in
refs 16-19.
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The paper is organized as follows: section II introduces the
phenomenological model; in section III we describe the methods
of simulations; section IV contains the results; and in section
V we compare and discuss them.

II. Phenomenological Model

The model consists of the following elementary (bimolecular)
reactions:

The scheme is a modification of the model of an open chemical
system with a catalytic (enzymatic) reaction, inhibited by an
excess of its reactant V. Reactant V is transformed to the
product U with E as the catalyst (steps 2 and 3). This part of
the scheme is the well-known Langmuir-Hinshelwood mech-
anism of catalytic reactions (or the Michaelis-Menten kinetics
for enzymatic reactions). Step 4 is the inhibition of the
Langmuir-Hinshelwood mechanism (or the Michaelis-Menten
scheme) by an excess of reactant V. It is noteworthy that many
enzymes are inhibited by their reactants, and therefore the above
scheme is a realistic one. Moreover, reactant V is transformed
directly to product U in step 5. It is assumed, that S is a solvent,
whose concentration is maintained constant. The system is
open, due to step 1, in which reactant V is produced from
reagent R, whose concentration is also maintained constant.

According to the mass action law, the behavior of the system
is described by five kinetic equations forV, U, E, X, andY, but
it is easy to notice thatE(t) + X(t) + Y(t) ) E0 is constant and
it is the first integral of the system. Therefore, one of the
variablesE, X, or Y can be calculated if two others are known,
and the dynamics of the system is described by four kinetic
equations only.

In order to compare the phenomenological behavior with ME
and MD simulations, the analysis of the kinetic equations for
four variables is necessary. These equations have the form:

where, for convenience, the designations of the reagents in italics
are used to denote their concentrations because this notation
does not cause any misunderstandings.

To make our microscopic as well as stochastic simulations
efficient, chosen values of the rate constants have to ensure that

all reactions occur at similar time scale. Also, ratios of the
concentrations of all reagents must remain in three orders of
magnitude.

In the sequel we will usek2 as a control parameter. It is
easy to see that eqs 6-9 have only one stationary state with
the coordinates:

whereKi ) k-i/ki for i ) 1, 4, and 5. TheV coordinate of the
stationary state does not depend onk2, theU andX coordinates
grow with k2, whereas theE coordinate decreases withk2. For
an appropriate choice of the rate constants and the concentrations
of S, R, and E0, the system of eqs 6-9 exhibit the Hopf
bifurcation at a critical value ofk2. In particular, in the case
where the other parameters are equal toS) 0.1,R ) 0.5,E0 )
0.2, andk1 ) 0.1, k-1 ) 0.12,k-2 ) 0.1, k3 ) 3.9, k4 ) 1.0,
k-4 ) 4.0,k5 ) 0.1, andk-5 ) 0.1, the Hopf bifurcation occurs
atk2 ≈ 5.914. For a broad range ofk2 the characteristic equation
for the stationary state has two negative real eigenvalues and
two complex ones. It may be checked that behind the Hopf
bifurcation the shape and stability of the limit cycle strongly
depend on the value ofk2. For k2 ) 8.0, we have a large,
strongly attractive limit cycle (see Figure 1B), whereas, ifk2 )
6.0, the limit cycle is inside the previous one, and it is much
smaller and less attractive (see Figure 1A). Nevertheless, the
periods of both limit cycles are almost equal (Tph ) 640 fork2

) 6.0 andTph ) 653 fork2 ) 8.0). As can be seen from Figure
1, for k2 ) 8 the trajectory initialized away from the limit cycle
approaches it after three to four loops, whereas fork2 ) 6 it
attains the limit cycle after several dozen loops. Therefore, for
k2 ) 8 one can expect a much smaller influence of fluctuations
as compared withk2 ) 6. Notice that oscillations of the
concentrations of reagents in the case of the small limit cycle
(for k2 ) 6) are sufficiently large to be observed in ME and
MD simulations in which only limited numbers of molecules
can be used.

Usually, the total concentration of the catalyst (or the enzyme)
E0 is much smaller than the concentrations of the reactant V
and the product U. In this case one can separate scales of time,
in which the concentrations of the reagents change. The
variablesE andX become then fast variables, whereasV andU
are the slow ones. In such a case, one can reduce the number
of variables because, according to the Tikhonov theorem,20 the
fast variables in a slow time scale are equal to their quasi-
stationary values. Then the behavior of the reduced system can
be described by two kinetic equations forV andU only. For
the values of the parameters given above andk2 ) 8, the limit
cycle of the reduced system is close to the projection of the
limit cycle calculated from the full model, whereas fork2 ) 6
it is much larger and close to the limit cycle fork2 ) 8.

R + S y\z
k1

k-1
V + S (1)

V + E y\z
k2

k-2
X + S (2)

X + S98
k3

E + U (3)

X + V y\z
k4

k-4
Y + S (4)

V + S y\z
k5

k-5
U + S (5)

dV/dt ) k1RS- k-1VS- k2VE + k-2XS- k4VX +
k-4(E0 - E - X)S- k5VS+ k-5US (6)

dU/dt ) k3XS+ k5VS- k-5US (7)

dE/dt ) -k2VE + (k-2 + k3)XS (8)

dX/dt ) k2VE - (k-2 + k3)XS- k4VX + k-4(E0 - E - X)S
(9)

Vs ) R/K1 (10)

Us )
k3E0SR

k2k-5(k2(R
2/(K1K4) + RS) + K1S

2(k-2 + k3)
+ R

K1K5
(11)

Es )
E0S

2(k-2 + k3)

(R2/(K1
2K4) + RS/K1)k2 + S2(k-2 + k3)

(12)

Xs )
E0SRk2

(R2/(K1K4) + RS)k2 + K1S
2(k-2 + k3)

(13)
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Moreover, the limit cycle for the reduced system withk2 ) 6
becomes as attractive as the limit cycle for the full model with
k2 ) 8.

III. Methods of Simulations

In the ME approach,2,7,8 the dynamics of a chemical system
is represented by a random walk in the configuration space, in
which coordinates are given by populations of molecules. A
state of the system (1)-(5) is described by the probability
distribution P(NV,NU,NE,NX,t) of finding a given number
{NV,NU,NE,NX} of the molecules at timet. The evolution of
P(NV,NU,NE,NX,t) is governed by the following master equation

where

The master equation expresses the rate of change of a probability
of a state{NV,NU,NE,NX} as a balance of the “birth” and “death”
processes. The “birth” term is formed by the positive compo-
nents of the right-hand side of (14). It describes an increase
of probability of a given state due to transitions from other states,
after one of chemical processes (1)-(5) is performed. Conse-
quently, the last component of the right-hand side of (14) is a
“death” term, describing escape from this state to other points
of the configuration space, corresponding to different popula-
tions of molecules. ν is a total rate of escape from the
configuration{NV,NU,NE,NX}. The components of sum (15)
represent the rates of reactive collisions, corresponding to
reactions 1-5. The coefficientsκi are related to the phenom-
enological rate constants of reactions 1-5 by κi ) ki/Ω, where
Ω is a volume of the system. This relation ensures that the
phenomenological eqs (6)-(9) can be recovered from the master
equation in the limitΩ f ∞, as the equations for the average
concentrations〈NR/Ω〉. The master equation (14) gives fluctua-
tions of the global populations of the species, so it applies to
the homogeneous system, without local effects.

Exact solutions of the master equations exist only for some
simple systems,8,21because the discrete form of these equations
is inconvenient for the analytical treatment. For systems of a
large volume this discreteness becomes less important, and the
ME can be expressed in terms of continuum variablesNR/Ω,
i.e., concentrations. This transformation yields the multivariable
Fokker-Planck equation,2,7,8 the form of which allows for a
physical interpretation. Terms involving the first derivatives
with respect to concentrations are related to the deterministic
dynamics. Terms with the second derivatives describe disper-
sion of deterministic states, due to internal fluctuations in the
system. The fluctuation terms are of the order 1/Ω; therefore,

as the volume of the system increases, the deterministic drift
prevails over the diffusive spread and the evolution of the system
approaches the phenomenological dynamics. However, close
to the Hopf bifurcation fluctuations play an important role even
for systems with large volumes.

On the other hand, the form (14) of the ME, involving discrete
numbersNR for populations of the species, allows for numerical
simulations. We have performed simulations of the stochastic
dynamics of the system applying the method of Gillespie,22

which generates a random trajectory according to the following
algorithm. Let us assume, that the system at an instantt is in
a state{NV,NU,NE,NX}. In the first step, a waiting timeτ for
escape of the system from this configuration point is sampled
from the exponential distribution

in which ν is given by (15). The next step consists of choosing
a particular reaction, which causes a transition of the system to
another point. The probabilitypR of selection of a chemical
processR from the scheme (1)-(5) is proportional to the
contribution of this reaction to the total rateν of reactive
collisions. That means

∂P/∂t ) κ1NRNSP(NV - 1,NU,NE,NX,t) +
κ-1(NV + 1)NSP(NV + 1,NU,NE,NX,t) + κ2(NV + 1)(NE +
1)P(NV + 1,NU,NE + 1,NX - 1,t) + κ-2(NX + 1)NSP(NV -
1,NU,NE - 1,NX + 1,t) + κ3(NX + 1)NSP(NV,NU - 1,NE -
1,NX + 1,t) + κ4(NV + 1)(NX + 1)P(NV + 1,NU,NE,NX +
1,t) + κ-4(NE0

- NE - NX + 1)NSP(NV - 1,NU,NE,NX -

1,t) + κ5(NV + 1)NSP(NV + 1,NU - 1,NE,NX,t) + κ-5(NU +
1)NSP(NV - 1,NU + 1,NE,NX,t) -

ν(NV,NU,NE,NX)P(NV,NU,NE,NX,t) (14)

ν(NV,NU,NE,NX) ) κ1NRNS + κ-1NVNS + κ2NVNE + (κ-2 +
κ3)NXNS + κ4NXNV + κ-4(NE0

- NE - NX)NS + κ5NVNS +

κ-5NUNS (15)

Figure 1. Projections of the phenomenological limit cycles (the thick
line) on V × U plane. The thin lines show trajectories converging to
the cycles: (A) corresponds tok2 ) 6 and (B)k2 ) 8. The difference
in rates of the convergence is clearly seen.

Θ(τ) ) ν exp(-ντ) (16)
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where NR1 and NR2 denote populations of molecules of the
corresponding two species involved in the bimolecular reaction
R. After the reactive collision, the populations{NV,NU,NE,NX}
are updated as they result from the chosen reactionR. Given
this new state, generation of dynamics proceeds beginning from
the first step, and so on.

The periodically extended MD technique for reactive hard
spheres23 is applied as the second technique to simulate the time
evolution of the system (1)-(5). The algorithm used here is
exactly the same as described in ref 13, so we only mention
the most essential aspects of the method. All reactants (E, R,
S, U, V, X, and Y) are represented by hard spheres with the
same mass (m) and diameter (d), which move according to
classical mechanics. We assume that there are no thermal
effects in reactions 1-5 so no kinetic energy is released or
consumed when a reaction occurs and thus all collisions between
spheres are elastic. The spheres are labeled by a chemical
identity parameter which defines their “chemical” properties but
does not have any influence on the mechanical motion. It
implies that the system of spheres treated as a whole remains
in the thermal equilibrium.

Both reactive and nonreactive collisions between spheres are
considered. In order to control the rates of chemical processes,
steric factors are introduced (they are denoted assi ands-i, i )
1, 5). If a collision between spheres representing reagents of a
particular process occurs, then a random number generator is
called by the program and, if the obtained random number is
smaller that the corresponding steric factor, then the collision
is regarded as a reactive one. After such collision the chemical
identity parameters of the spheres involved are modified
according to the reaction scheme (1)-(5). Otherwise, the
collision is nonreactive one and the spheres retain their chemical
identities. A similar type of random selection of reactive
collisions is commonly used in all large-scale microscopic
simulations (including MD ones) of chemical systems.10-19

In order to keep the concentrations of the reactants R and S
constant, we use the procedure described in ref 24. Beside the
reactants, the system contains also nonreactive particles which
play the role of reservoir of R and S molecules. If a particle of
S (R) vanishes in one of the reactions, then simultaneously a
randomly selected particle of reservoir is transformed into S
(R), respectively. On the other hand, if a particle of S (R)
appears, then a randomly chosen particle of S (R) becomes a
particle of reservoir. These processes have no influence on the
dynamics of the system because they do not participate in (1)-
(5). However, the random transformations between the reservoir
particles and reactants introduce a stirring in the simulated
system which helps to destroy the nonequilibrium spatial
correlations between molecules of reactants.25

To make the MD simulations efficient, we use a prerecorded
trajectory representing a small system of spheres at the thermal
equilibrium as the database on sequence of collisions. This
trajectory is calculated as the solution of the Newton equations
for all particles enclosed in a box with periodic boundary
conditions. The information it contains completely describes
the deterministic motion of hard spheres in a large system which
is constructed by a periodic expansion of the original small
one.24 The periodic boundary conditions mean that positions
and velocities of spheres are periodic in space with the period
equal to the length of the box within which the system is
enclosed. In this way the original small system may be
periodically expanded in any of the directions by any integer

number of the box lengths. Of course, if a chemical identity
of molecules is neglected, then such expansion does not bring
us any new information. However, the situation is different in
a multicomponent chemical system, in which the motion of
spheres is not related to chemical identity. First, different
chemical composition may be initialized in various boxes by
marking the equivalent (by periodicity) spheres in a different
way. Secondly, steric factors (if they are not equal to unity)
additionally differentiate the time evolution in various boxes,
as a collision between the same objects may be reactive in one
box and nonreactive in another. The periodic boundary condi-
tions assure free motion of molecules between boxes. Therefore,
having a recorded trajectory, one can use this information to
get time evolutions for systems of various sizes.

The values of steric factors for MD simulations were obtained
by scaling the phenomenological rate constants by 0.06(6),
which leads to:s1 ) 0.006(6),s-1 ) 0.008,s-2 ) 0.006(6),s3

) 0.26,s4 ) 0.066(6),s-4 ) 0.266(6),s5 ) 0.006(6), ands-5

) 0.006(6) for reactions 1-5, respectively. Fork2 ) 8 we have
s2 ) 0.533(3), whereas fork2 ) 6 the steric factors2 ) 0.4. In
order to adjust the frequencies of reactive collisions to the rate
constantski appearing in the kinetic equations, the real time of
the MD simulationstMD is rescaled to the phenomenological
time t according to:

whereg is the value of the radial distribution function at the
sphere diameterd for the system of spheres characterized by
the assumed density,kB is the Boltzmann constant, andT )
300 K is the temperature of our system. The results discussed
in the next section have been obtained by a periodic expansion
of the system ofN ) 400 hard spheres placed in a cubic box
with the side lengthl ) 12.5d (and thus the packing fraction is
η ≈ 0.11 andg ) 1.35). The prerecorded trajectory contained
information on 20 160 000 collisions (over 50 000 collision per
one sphere). It allowed us to study processes which in a
phenomenological time scale last overte = 840. Having in mind
that the phenomenological periods of oscillations are only
slightly shorter thante, we see that the prerecorded trajectory
covers times only slightly longer than one period. In order to
study the long-time behavior of the system, we started a new
simulation program from concentrations obtained at the end of
the previous one. This procedure corresponds to the forced
mixing of our system after eachte interval, and it destroys
possible spatial correlations which may appear between particles
representing different reactants.

It is assumed that the density of the system is 8 mol/L, which
corresponds to the volume of the original box equal to 83.(3)
× 10-21 cm3. At the beginning the chemical identities are
assigned to spheres in a random way and all remaining spheres
are marked as the reservoir particles.

The unit of volume is rescaled in the simulations to 103 cm3/N
) 1.6(6)× 10-21 cm3, whereN is the Avogadro number. Then
the volume of the original box of MD is equal to 50 in these
units. In the new units the number concentrations of reagents
are numerically equal to the concentrations in moles/liter in the
phenomenological equations. MD simulations performed for
the system expanded by six box lengths in all directions give
the volumeΩ equal to 10 800, whereas the expansion by eight
box lengths leads toΩ ) 25 600.

pR ) ν-1
κRNR1NR2 (17)

t ) 1
8
d2gxπkBT

m

s1

k1
tMD (18)
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IV. Results of Simulations

The initial condition for calculations presented below lies on
the limit cycle. Fork2 ) 6, they areV(t ) 0) ) 0.366,U(t )
0) ) 4.096,E(t ) 0) ) 0.018, andX(t ) 0) ) 0.095; fork2 )
8, V(t ) 0) ) 0.150,U(t ) 0) ) 4.392,E(t ) 0) ) 0.039, and
X(t ) 0) ) 0.117. The concentration of V as a function of
time for Ω ) 10 800 atk2 ) 6 and k2 ) 8 obtained in
phenomenology, ME calculations, and MD simulations are
shown in Figure 2, A and B, respectively. Stars mark the ends
of intervals te which correspond to the length of individual
simulation programs in MD simulations. As predicted by the
phenomenology, the results of the simulations exhibit oscillatory
character of V. The oscillatory behavior is also observed for
concentrations of all remaining reagents. The oscillations
obtained fork2 ) 8 (Figure 2B) are more regular than those for
k2 ) 6 (Figure 2A). As can be seen in Figure 2, fluctuations
are more pronounced around the extrema. We have also
observed that fluctuations of V are more important than those
of U because the number of particles representing V is by an
order of magnitude smaller than the number of U particles.
Despite fluctuations the periods obtained in simulations (the
average time between consecutive maxima of U) are in very

good agreement with phenomenology and they are equal totME

) 657,tMD ) 640 fork2 ) 6, andtME ) 656,tMD ) 657 fork2

) 8. As expected forΩ ) 25 600, oscillations appear to be
more regular and the periods are in a better agreement with
phenomenology.

In order to simplify the further comparison of the results
obtained in simulations and phenomenology, we consider the
projection of the four-dimensional limit cycle on theV × U
phase plane. The projection of a trajectory obtained fork2 ) 6
andΩ ) 10 800 (much longer than in Figure 2) on this plane
is shown in Figure 3. The results obtained by both simulation
methods are widely distributed around the limit cycle. In MD
simulations the crater-like probability distribution can be noticed,
whereas ME calculations give nonvanishing density of states
near the center of the limit cycle. We have verified that the
trajectories obtained in ME simulations approach the phenom-
enological limit cycle when the volume increases (compare
Figure 4 forΩ ) 3 200 000).

There is a qualitative difference in the evolution of the system
with k2 ) 8. The projection of a trajectory obtained forΩ )
10 800 is shown in Figure 5. In this case the trajectories occupy
relatively narrow rings. It can also be noticed, in agreement

Figure 2. The concentration of V as a function of time forΩ ) 10 800,
k2 ) 6 (A) andk2 ) 8 (B) obtained in phenomenology (the solid line),
ME calculations (long dashed line), and MD simulations (short dashed
line). Stars mark the ends of intervalste which correspond to the length
of individual simulation programs in MD simulations.

Figure 3. Comparison of the phenomenological limit cycle (thick line)
with the results of simulations (points) fork2 ) 6 andΩ ) 10 800;
ME (A) and MD (B). In MD simulations the rate constants are scaled
by 0.06(6). The thin straight line in (B) shows the direction of phase
equal to zero.
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with Figure 2, that fluctuations are the strongest around the
extrema and diminish with increase of volume. The ring
obtained in ME simulations is focused around the phenomeno-
logical limit cycle. The left branch of phenomenological limit

cycle agrees well with the results of MD simulations (see Figure
5B). However, the right part of MD results is shifted toward
smaller concentrations of V as compared with the phenomeno-
logical limit cycle. The qualitative difference between the
phenomenological limit cycle and MD does not change if the
size of system increases; it can be seen even more clearly in
Figure 6 which shows the results forΩ ) 25 600. To get more
information on the origin of this effect, we performed additional
MD simulations for lower relative frequency of reactive
collisions (the rate constants were scaled by 0.02). We observe
that the right branch of the trajectory is shifted toward the
phenomenological limit cycle. Therefore, we believe that the
difference comes from the nonequilibrium effects related to
spatial correlations between concentrations of reactants which
become less important if the reactions are slower.25 The
analogous nonequilibrium effect fork2 ) 6 is probably hidden
by very large fluctuations.

In the sequel we shall describe the results of simulations using
a phase and a radius. Let us define the centerC of the projected
limit cycle as the point on theV × U plane, the coordinates of
which are the average values of concentrations. The phenom-
enology gives the following coordinates ofC:

The limit cycles obtained in ME simulatins are in such good
agreement with the phenomenological ones that we have not
introduced separate centers for them and used the phenomeno-
logical values. Having in mind that the MD results are shifted
with respect to the phenomenological limit cycle, we have
introduced separately the center of MD limit cycle (CMD) as
the mean ofU andV obtained in simulations. The coordinates
of CMD are:

It is noteworthy that the MD results are in a fair agreement
with the phenomenological position of the center. The changes

Figure 4. Comparison of the phenomenological limit cycle (thick line)
with the results of ME simulations (the dashed line) fork2 ) 6 and
largeΩ ) 3 200 000.

Figure 5. The same as in Figure 3 butk2 ) 8 andΩ ) 10 800.

Figure 6. The same as in Figure 3B butk2 ) 8 andΩ ) 25 600.

Vc ) 0.416 565,Uc ) 3.964 75, fork2 ) 6

Vc ) 0.416 609,Uc ) 4.089 82 fork2 ) 8

Uc ) 3.933,Vc ) 0.414 fork2 ) 6 andΩ ) 10 800

Uc ) 4.048,Vc ) 0.413 fork2 ) 8 andΩ ) 10 800

Uc ) 3.934,Vc ) 0.414 fork2 ) 6 andΩ ) 25 600

Uc ) 4.046,Vc ) 0.412 fork2 ) 8 andΩ ) 25 600
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in coordinates ofC for k2 ) 6 andk2 ) 8 predicted by the
phenomenology are confirmed by the MD simulations. More-
over,CMD obtained for both sizes of the system agree very well.

Knowing the center of the projected limit cycle, we can
introduce parameterization of the cycle using radius and phase.
The radius is defined as the length of vector from the center
toward a given point on the cycle. To define the phase one
needs to specify the direction on the plane which corresponds
to the zero phase. In our analysis it is the direction from the
centerC toward the pointP0 which represents the initial state
of simulation. Fork2 ) 6 it wasV0 ) 0.366 andU0 ) 4.096,
whereas fork2 ) 8 we setV0 ) 0.150 andU0 ) 4.392. The
phase for any pointQ can be calculated as the angle between
vectorsCPb

0 andCQb. The phase is positive for the clockwise
direction, because the system rotates in this direction. In the
following we use the scaled phase that is the above-defined angle
divided by 2π. In this way the phenomenological radius is a
well-defined function of the phaseφ. More generally, any point
Q on the planeV × U is localized by two coordinates: phase
φ, and the scaled radius defined as the ratio of the distanceCQ
to the radius of the projected limit cycle for the same phase.

Comparison ofφ(t) obtained from simulations and phenom-
enology for the casek2 ) 6 is presented in Figure 7. The
considered range of times was selected in order to see what is
the influence of well-pronounced fluctuations inU(t) andV(t)
(cf. Figure 3) onφ(t). It can be seen that within a single period
the phase as a function of time has two regions of slow increase,

Figure 7. Comparison of phases as functions of time fork2 ) 6 and
Ω ) 10 800: phenomenology (solid line), ME calculations (long-dashed
line), and MD simulations (short-dashed line).

Figure 8. Comparison of angular velocities as functions of the phase
for k2 ) 6, Ω ) 10 800 (A) andk2 ) 8, andΩ ) 10 800 (B). Notation
as in Figure 7.

Figure 9. The radius (solid line) and its dispersion (dashed line) as
functions of the phase fork2 ) 6 andΩ ) 25 600: (A) ME calculations
and (B) MD simulations.
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which correspond to the extrema ofU(t), and two regions of
fast increase related to the intervals of time in whichU(t)
changes rapidly. The intervals in which fluctuations are
pronounced correspond to the intervals in which the phase is
nearly constant. Each plateau of the phase increases the
difference betweenφ(t) obtained in simulations and the phe-
nomenological one. We note that fork2 ) 8 there is much
better agreement between the results obtained by all three
methods. In this case small shifts ofφ with respect to the
phenomenological phase appear only in regions whereφ changes
slowly.

The influence of fluctuations can be seen more clearly if we
consider the angular velocity. The results obtained for MD and
ME simulations are compared with phenomenology in Figure
8A,B for k2 ) 6 andk2 ) 8, respectively, andΩ ) 10 800. In
MD simulations we record approximately 7000 points of
trajectory (V(t), U(t)) per single period. They are grouped into
sets consisting of 100 points, and the angular velocityω(φ) )
dφ/dt is separately calculated for each group. The angular
velocity has two maxima per period and the values ofω(φ)
change by an order of magnitude. Fork2 ) 8 (Figure 8B), we
have good agreement between the phenomenologicalω(φ) and
the results of MD simulations. In the case ofk2 ) 6 (see Figure

8A), the agreement is also good but the dispersion is much
larger. The influence of fluctuations on the angular velocity is
the most important in the intervals of time for whichω increases.

Figure 9A,B shows the scaled radius and its dispersion
obtained in simulations as functions of the phase fork2 ) 6
and Ω ) 25 600. There is a qualitative agreement between
ME results (see Figure 9A) and MD data (Figure 9B). However,
the radius of the MD trajectory is smaller than the ME one
(compare Figure 5). Note that the dispersion obtained from
ME simulations is larger than that from MD.

The distribution functions of all relative radii obtained in
simulations are shown in Figure 10A-D. For MD simulations,
the radius is calculated with respect toCMD and it is scaled by
the phenomenological radius corresponding to the same phase.
As expected, the dispersion of distribution functions decrease
with increasing volume. Figure 10A presents the results
obtained from ME fork2 ) 6 and various volumesΩ. The
corresponding results obtained from MD are shown in Figure
10B. In both cases the average radius for small systems is larger
than the phenomenological one. In ME simulations the mean
value of the radius converges to the phenomenological result if
Ω increases. For systems of the same size, the dispersions of
the radius in ME simulations are larger than those observed in

Figure 10. The distribution functions of the radius. (A) ME results fork2 ) 6 andΩ ) 10 800 (solid line),Ω ) 86 400 (long-dashed line), and
Ω ) 691 200 (short-dashed line). (B) MD results fork2 ) 6 andΩ ) 10 800 (solid line) andΩ ) 25 600 (dashed line). (C) ME results fork2 )
8 andΩ ) 10 800 (solid line),Ω ) 50 000 (long-dashed line), andΩ ) 204 800 (short-dashed line). (D) ME results fork2 ) 8 andΩ ) 10 800
(solid line) andΩ ) 25 600 (dashed line).
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MD. Figure 10C,D shows the distributions of radii fork2 ) 8
obtained in ME and MD simulations, respectively. In this case
the distribution functions are much narrower than fork2 ) 6.
The results of ME simulations agree with phenomenology
because the maximum of the distributions is close to 1 and its
does not depend onΩ. The MD results give smaller values of
the average radius than ME simulations. This tendency is
similar to the effect mentioned above fork2 ) 6, and comes
from the influence of the nonequilibrium effect on the shape of
MD trajectories. It can be expected for large volumes that
dispersions scale likeΩ-1/2; however, we do not observe such
scaling in the range of volumes (Ω < 700 000) studied in ME
simulations.

V. Discussion

The results of our simulations exhibit oscillatory behavior
for the model of chemical system as it is predicted by
phenomenological equations. The periods of oscillations ob-
tained from simulations are in a good agreement with their
phenomenological values. However, instead of a closed line
corresponding to the limit cycle, the trajectories obtained in
simulations are dispersed as a “ring”-like structure describing
the behavior of the system influenced by internal fluctuations.
We introduced an approximate quantitative description of
fluctuations based on the radius and the phase. As expected,
we have found that the strength of fluctuations decreases with
the system’s size. By considering two cases in which (according
to the phenomenology) the limit cycle is weakly and strongly
attractive, we have been able to distinguish two types of
fluctuations, which have not been discussed separately in the
literature yet. Short time scale fluctuations are related to
stochasticity in elementary reaction steps and long time fluctua-
tions correspond to random motion of the simulated trajectories
in the phase space. The later ones depend on phenomenological
parameters (k2 in our case). In order to see more clearly the
difference between these types of fluctuations, we compared
the average dispersion of radius for time intervals which are
one period long with the dispersion for the whole simulation.
For k2 ) 8 the average dispersion is about two-thirds the total
dispersion. Fork2 ) 6 the average dispersion of radii measured
within a single period is less than half. It indicates that in the
oscillating system with strongly attracting limit cycle (k2 ) 8)
fluctuations are fully developed at much shorter times (as
compared with the period of oscillations) than in the case where
the limit cycle is weakly attracting (k2 ) 6).

Nonequilibrium effects which are clearly seen fork2 ) 8 may
be connected with spatial correlations which disturb homogene-
ity of the system.25 These effects decrease the effective value
of k2 as compared with the phenomenological one. The
influence ofk2 on a position of the limit cycle can be easily
seen on the projection of the limit cycle on the planeE × X.
The projections fork2 ) 6 andk2 ) 8 are shown in Figure 11.
As can be seen the projection of the MD trajectory fork2 ) 8,
shown as points, is shifted down and left to what corresponds
to a smaller effective value of this rate constant.

The model constructed in this paper is composed of elemen-
tary bimolecular reactions and, therefore, it allows direct
comparison of the results of MD and ME simulations. We have
found that the ME results are in a good agreement with the
more rigorous MD method. The good agreement between the
both methods obtained in our simulations confirms earlier results
of Baras et al.26 who compared the ME approach with the Bird’s
technique for another model of an oscillating system. We can
expect even better agreement when the considered reactions are

slower, so that the nonequilibrium effects are less important.
In such cases the ME approach can give a reasonable description
of global fluctuations in oscillating systems. However, more
rigorous techniques like MD may be required to describe local
fluctuations which can strongly influence the dynamics of
nonideally stirred (or unstirred) macroscopic, nonlinear systems.
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